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Abstract

Injuries have become devastating and often under-recognized public health concerns. In

Canada, injuries are the leading cause of potential years of life lost before the age of 65. The

geographical patterns of injury, however, are evident both over space and time, suggesting

the possibility of spatial optimization of policies at the neighborhood scale to mitigate injury

risk, foster prevention, and control within metropolitan regions. In this paper, Canada’s

National Ambulatory Care Reporting System is used to assess unintentional and intentional

injuries for Toronto between 2004 and 2010, exploring the spatial relations of injury through-

out the city, together with Wellbeing Toronto data. Corroborating with these findings, spatial

autocorrelations at global and local levels are performed for the reported over 1.7 million

injuries. The sub-categorization for Toronto’s neighborhood further distills the most vulnera-

ble communities throughout the city, registering a robust spatial profile throughout. Individ-

ual neighborhoods pave the need for distinct policy profiles for injury prevention. This brings

one of the main novelties of this contribution. A comparison of the three regression models

is carried out. The findings suggest that the performance of spatial regression models is sig-

nificantly stronger, showing evidence that spatial regressions should be used for injury

research. Wellbeing Toronto data performs reasonably well in assessing unintentional inju-

ries, morbidity, and falls. Less so to understand the dynamics of intentional injuries. The

results enable a framework to allow tailor-made injury prevention initiatives at the neighbor-

hood level as a vital source for planning and participatory decision making in the medical

field in developed cities such as Toronto.

1. Introduction

1.1. The injury landscape

Injury is one of the leading causes of death and disability in the United States of America [1].

In Canada alone, an estimated 4.27 million Canadians aged 12 or older, suffered a debilitating
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injury between 2009–2010 [2]. The growing number of traumas in urban areas has brought a

significant public health concern [3] and fostered a negative perception of health and subjec-

tive wellbeing [4]. It is projected that by 2020, injuries will be the third foremost cause of death

and disability worldwide [5]. Additionally, the repercussion of injuries from traumatic events

has a temporal lag on the psychological and social adjustment of victims, jeopardizing wellbe-

ing in general, and leading to depression [6]. Injuries can be divided into two significant

groups generating distinct demographic profiles with leading causes and complex characteris-

tics of epidemiological concern [7]. On one side, unintentional injuries [8] form a leading

cause of death in the population between the ages of 1 to 39. Intentional injuries, on the other

hand, including assaults and suicides, rank as the second leading cause of death in people ran-

ged 15 to 39. Injuries, therefore, have direct consequences on the active population of Canadi-

ans, where three individuals die from injury-related causes every day.

Further to these deaths, fifty Canadians are hospitalized due to injuries [9], which poses a

severe strain on the Canadian economy and workplace [10]. Injuries currently represent over

seven percent of all hospitalizations [11]. Non-fatal injuries accrue an additional burden to

society, as many of these injuries affect the brain or spinal cord, leaving a substantial incidence

over permanent disability. Costs on the health-care system in terms of waiting times is evident

given the encumbrance over the carrying capacity of hospital systems. Geographical and tem-

poral knowledge of injury events may help in optimizing adequate strategies that convey pre-

vention, control, and efficient monitoring. While until recently, the focus was predominantly

on the individual characteristics of the injured person, advances in spatial computation and

data science promote new and integrative roles of the spatial aspects of what may lay within

the injury landscape at regional level [12–14]. The injury landscape resonates with the concept

of regional intelligence [15], where cities may have a proactive role through ubiquitous data

integration in mitigating injury risk. By injury landscape, we define the geographical topology

of spatially-explicit interactions of injury, where different types of injury occur with particular

spatial attributes throughout a given geographic territory.

This paper has the following structure. The next section, Section 1, offers a literature review

of the paradigm of injury, and the importance of novel approaches for injury prevention. Sec-

tion 2 brings the Methodology presenting a systematic framework of the different tools and

techniques and exploring the necessary steps of data that allow the statistical and geostatistical

analytics. Section 3 discusses the results of the implemented approach for the three regions,

and Section 4 offers some concluding remarks and summarizes potential future works.

1.2. Literature review

Spatial understanding of the geography of metropolitan areas is of emerging importance in

regions that have witnessed rapid urbanization [16], and where the incidence of injuries are

positively correlated [17, 18]. Geographic Information Systems (GIS), spatial analysis, and

geostatistics allow addressing regional phenomena of health-related concerns in a spatially-

explicit context [19]. Several studies analyzed the integration of geographical aspects of public

health. For example, Kivell and Mason (1999) used geographic information systems (GIS) to

place thirty trauma centers across the United Kingdom [20]. Several authors have also used

GIS to predict pedestrian injuries [21–23]. Research on traffic-accident information systems

has optimized the capacity to assess the risk of different types of traffic collisions [24–26]. Spe-

cifically, in the City of Toronto, researchers have explored the spatial patterns of motor vehicle

collisions leading to pedestrian injury based on the pedestrian injury type, age and location

within the city [27]. Other studies have examined the relationship between crime and geo-

graphic location [28, 29], child maltreatment and geographic location [30], frequency and type
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of drug use, which influenced the location of drug and HIV-prevention activities [31], and the

likelihood of increased risk of violent injury based on racial segregation [32].

An additional aspect of the spatial patterns of injury that has been explored is the compari-

son of injury by type in rural versus urban areas. These studies discuss how physical space and

subsequent infrastructure (i.e., access and distance to hospitals) links to injury severity and

morbidity. Additionally, these studies highlight the importance of understanding the spatial

nature of injury by type so that injury prevention strategies may be more accurately targeted

[33–35].

Like this study, there are other studies that have explored the spatial nature of injuries with

ambulance datasets, including a 2010 study that, with ambulance data from the City of

Toronto, explored the spatial and temporal patterns of violent injury [36] and a 2012 study

which, with ambulance data, conducted and analysis of outdoor falls based on temporal, spatial

and demographic distribution in Laval and Montréal, Canada [37].

The relationship between the spatial distribution of injuries and demographic composition

of injured individuals has also been explored. For example, a 2016 study explored the cultural,

social and geographic components leading to higher injury risk for Aboriginal peoples in Brit-

ish Columbia, Canada [38]. Another 2016 study explored injury burden caused by accidental

venomous bites based on national geography and demographics in Australia [39] and a 2017

study explored the socio- and geo-demographics linked to firearm injuries in Miami-Dade

County, Florida [40].

Analysis’ of the outcomes of injuries and how they are linked to geographic location and

demographics have also been conducted in several studies including a 2019 study which exam-

ined the association between injury mortality, geography and sex as it related to youth suicide,

senior falls and transport injuries [41]. Furthermore, a study conducted by Keeves and others

(2019) used electronic databases of various studies to investigate the outcomes of traumatic

injury and their geographic variations, globally. This study found that urban pre-hospital

patients have a lower risk of mortality compared to rural patients. This research concludes that

there are currently gaps in the literature in regard to determining the link between injury out-

come and geography and recommends the use of geographic information systems in future

studies related to the spatial distribution of injuries [42].

Despite the many contributions, computational power and data availability have, in recent

decades, hindered the opportunity of examining large geographical extents or comparing mul-

tiple regions simultaneously. Such studies are particularly important to support regional deci-

sion-making for injury prevention proactively and determine key characteristics of injury

distributions within urban cores [43–45]. Concise multi-temporal datasets for extensive stud-

ies on the injury landscape are rarely available. This study approaches this gap by assessing the

complete injury landscape of Toronto. A spatial-analytical framework allows the critical char-

acteristics of different injury types leading to an integrative vision of the consequences and the

underlying patterns of injuries in Toronto while benefiting from open data initiatives the city

has available. The integration of open data such as Wellbeing Toronto (WT) is addressed at

the neighborhood level, offering insights on the potential participatory role of public health

initiatives for injury prevention.

2. Methodology

2.1. Data

2.1.1. Injury data. The National Ambulatory Care Reporting System (NACRS) is a com-

prehensive database that contains demographic, diagnostic, and procedural information on all

injury-related occurrences where an ambulance has been dispatched. ICD-10 codes were
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selected for unintentional injuries: (i) resulting from external causes (ICD-10 codes S00 to

T14), (ii) external morbidity and mortality (ICD-10 codes V01 to V99), and (iii) fall (ICD-10

codes W00 to W19). For intentional self-harm, the ICD-10 codes from X60 to X84 were used.

Data cleaning was carried out further to importing the data from its original format in SAS.

The presence of a count with less than five events was discarded and considered as 0. A total of

1714512 injuries (intentional and unintentional) were registered and georeferenced by postal

code conversion to latitude and longitude coordinates between 2004 to 2010 (Table 1).

The majority of injuries resulted from external causes of which: (i) injuries to the wrist and

hand, (ii) injuries to the head, and (iii) injuries to the knee and lower leg were the most signifi-

cant cause of ambulance dispatch.

2.1.2. Socio-economic data. Wellbeing Toronto (WT) data was used to assess critical var-

iables at the neighborhood level for Toronto (Fig 1). WT corresponds to an integrative and

open approach for visualization of Toronto’s 140 neighborhoods [46]. As an open data

Table 1. Distribution of injury events per main categories.

Causes Total Percentage

Injuries from external causes 1602996 93.50%

External Morbidity and Mortality 22888 1.33%

Intentional Injuries 1877 0.11%

Falls 86751 5.06%

https://doi.org/10.1371/journal.pone.0248285.t001

Fig 1. Toronto neighborhoods ([1]).

https://doi.org/10.1371/journal.pone.0248285.g001
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concept, it hosts a significant amount of data over three reference periods (2008, 2011, and

2014), that include crucial variables encouraging citizen participation, government account-

ability, and data transparency.

For health analytics, these are vital requisites for successful policy implementation. The

Table below shows the variables that were selected from the WT portal (Table 2).

2.2. Methods

2.2.1. Preliminary data organization. The data was georeferenced utilizing the existing

postal code attribute and projected as point features for every single incident onto WGS84.

Due to privacy reasons, the data was handled in a secured server and a count selection by loca-

tion to the nearest census tract performed. This resulted in a generalized geometry dataset.

The generalized point count polygons per category of injury were then further simplified onto

the neighborhood level and projected into NAD83 17N. The compiled data from WT were

added to the data set for further exploration of geostatistical analysis.

2.2.2. Global spatial autocorrelation. Global spatial autocorrelation was tested employ-

ing a Moran’s I index per injury category. This statistic was conducted to test the null hypothe-

sis (Ho) relating to the absence of spatial clustering of injuries in Toronto (α = 0.05) (Eq 1):

I ¼
j

Pi¼n
i¼1

Pi¼n
i¼1

wij

�

Pi¼n
i¼1

Pj¼n
j¼1

wijðxi � xÞðxj � xÞ
Pi¼n

i¼1
ðxi � xÞ2

ð1Þ

Where wij corresponds to a binary weight matrix defined with the weight of one, given a

contiguity of adjacency for any value that holds wij = 1 and any value without adjacency as wij

= 0. The product of the distance is defined as xi for any location i in the distance to relation of

its mean. This holds as a statistic for assessing the entire spatial distribution of adjacency

formed for the city of Toronto. The null hypothesis was rejected in all categories, suggesting a

high spatial autocorrelation for all the injury categories in Toronto.

2.2.3. Local spatial autocorrelation. The Local Gi
� statistic was calculated by first deter-

mining the injury density. While several approaches allow for spatial density estimation, we

Table 2. Selected variables from Wellbeing Toronto (N = 140).

Variable Acronym min max mean sd Year

Green Spaces GreeSp 0 14.271 0.58 1.29 2011

Pollutants Released to Air PollRel 0 1585690 58944.02 184007.30 2011

Traffic Collisions TrafCol 15 778 173.99 123.76 2011

Total Population TotPop 6577 65913 19511.22 10033.59 2014

Low Income Families LowIncFam 260 10050 2184.64 1572.53 2014

Visible Minority Category VisMin 6370 65620 19226.57 9942.22 2014

Seniors 65 and over Sen 730 8990 3048.29 1579.02 2014

Recent Immigrants RecIm 95 7405 1342.75 1183.76 2014

Low Income Population LowIncPop 470 15430 4164.79 3045.62 2014

Social Assistance Recipients SocAssRec 28 5576 1385.42 1196.94 2014

Social Housing Units SocHous 0 3399 641.09 653.99 2014

Seniors Living Alone SenLivAl 40 630 221.43 128.84 2014

Rented Dwellings RentDwell 200 13640 3400.68 2396.06 2014

Drug Arrests DrugArr 0 174 20.76 26.47 2014

Assaults Assaults 9 712 108.42 102.19 2014

Robberies Robberies 0 112 20.94 20.13 2014

https://doi.org/10.1371/journal.pone.0248285.t002
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considered that the importance of neighborhood demographics should hold. Thus, the neigh-

borhood injury density results from a ratio where density corresponded to the injuries found

in a neighborhood by the population count of the neighborhood. While greater spatial detail

could have helped the accuracy of the assessment, one should note that the objective is related

to the potential of participatory interaction of injury with available open data. In this sense,

neighborhoods are the ideal geographic boundary for governance and city planning.

This approach allowed for the seamless definition of injury density at a spatial level and

computation of the statistic, determining the locational aggregation of injury hotspots and

cold spots [47]. The calculation of the local Gi
� statistic is as follows (Eq 2):

G�i dð Þ ¼
Pn

j¼1
wi;jxi;j� x

Pn
j¼1

wi;j

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n
Pn

j¼1
w2

i;j � ð
Pn

j¼1
wi;jÞ

2 �

n� 1

r ð2Þ

Where wij is the spatial weight matrix following a 1 km distance (d), and wij(d) is assumed

as 1. The maps show densities of injury patient residences as hot spots and cold spots, with red

representing the highest concentrations of injury and blue the lowest. The selection of regional

socio-demographic characteristics for this analysis was guided by previous research and avail-

ability of Wellbeing Toronto data.

2.2.4. Regression framework. Screening of key demographic variables available at Well-

being Toronto was carried out by means of a stepwise regression through backward elimina-

tion. This allowed for a successful preliminary selection of variables that were applied to three

distinct regressions frameworks: (i) spatial lag model, (ii) spatial error model, as well as a non-

spatial model to compare performance, and (iii) ordinary least squares model. The spatial lag

model (SL) (Eq 3) understands spatial dependency by the addition of a dependent variable that

defines the spatial attribute.

Y ¼ rWyþ Xbþ �;

� � Nð0; s2IÞ
ð3Þ

Where I represents an identity matrix, and the N(0,σ2I) indicates that the errors follow a

normal distribution with mean equal to zero and constant variance. When ρ is zero, the lag-

dependent term is canceled out, leaving the model under the Ordinary Least Squares (OLS)

form. Though when ρ is not zero, it means that spatial dependency exists, and that non-ran-

dom spatial observable interactions are present [48]. As for the spatial error model (Eq 4), the

spatial dependency ξ is accounted within the error term �, assuming the errors of the model as

spatially correlated [49].

Y ¼ Xbþ lWxþ �;

� � Nð0; s2IÞ
ð4Þ

3. Results

3.1. Exploratory data analysis

The Figure below exemplifies the categorization of injuries based on external causes (Fig 2).

Concerning unintentional injuries in Toronto between 2004 and 2010, for the category of

external causes, a total of 1602996 were obtained. For external morbidity and mortality, a total

number of 22888 were registered, and for falls, a total of 86751 lead to ambulance dispatch.

This constituted the larger set of the data used as intentional injuries corresponded only to a

fraction of 1877 events, short of 0.12 percent of the total data set.
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3.2. Spatial autocorrelation

3.2.1. Global spatial autocorrelation. Testing for spatial autocorrelation through Mor-

an’s I statistic for each event brought evidence that there is significant spatial autocorrelation

for all injury categories at the global level (Table 3). Despite regional differences in the rates of

unintentional and intentional injuries, the spatial patterns of the residences of those injured by

unintentional or intentional mechanisms were found to be highly spatially autocorrelated

(p< 0.01 for each injury type) indicating that the residence locations of those injured by each

of these mechanisms were not randomly distributed in the city of Toronto. This suggests a

high spatial clustering that justified further local exploration.

Highest Moran’s I values were registered for (a) Injuries to unspecified parts of the trunk,

limb or body region, (b) Injuries involving multiple body regions, and (c) Injuries to the neck.

While (a) and (b) suggest anatomically more extensive regions, injuries to the neck are quite

specific and may become a cause for serious concern given the propensity for physical disabil-

ity, recovery time, and additional cost to care. The spatial aspects of this injury analysis overall

lead to a pressing conclusion that there are clearly geographical determinants that should be

assessed to understand the landscape of injury (Table 4).

As expected, all indices remained high, with falls showing very strong spatial-autocorrela-

tion, followed by injuries and injuries leading to mortality. Intentional Injuries had the lowest

Fig 2. Percentage of all injury types between 2004 and 2010. �Acronyms: Itth—Injuries to the head; Ittn—Injuries to

the neck; Ittt—Injuries to the thorax; Ittalblsap—Injuries to the abdomen, lower back lumbar spine and pelvis; Ittsaua

—Injuries to the shoulder and upper arm; Itteaf—Injuries to the elbow and forearm; Ittwah—Injuries to the wrist and

hand; Itthat—Injuries to the hip and thigh; Ittkall—Injuries to the knee and lower leg; Ittaaf—Injuries to the ankle and

foot; Iimbr—Injuries involving multiple body regions; Itupotlobr—Injuries to unspecified parts of trunk, limb or body

region; EMaM—External Morbidity and Mortality; Flls–Falls; IntI—Intentional Injuries.

https://doi.org/10.1371/journal.pone.0248285.g002
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Moran’s I, however, still corresponding to a very strong Moran’s I. Local spatial autocorrela-

tion allows us to assess the neighborhoods at a local scale through the integration of hotspots.

3.2.2. Local spatial autocorrelation. The calculation of Local Gi� allowed for the explora-

tion of the spatial distributions of hotspots and their significance levels for the categories of: (i)

unintentional injury (external causes), (ii) unintentional injury (resulting in morbidity and

mortality), (iii) unintentional injury (due to falls), (iv) intentional injury (self-harm). A weight

matrix was generated of queen contiguity type of order 1, for the 140 neighborhoods, as a min-

imum number of neighbors 3 and a maximum number of neighbors of 11 (Fig 4). The mean

and median neighbors corresponded to 5.96 and 6.00, respectively, and a total percentage of

non-zero values of 4.26 percent was found.

Fig 3 depicts the Queen contiguity map for neighborhoods in Toronto, nevertheless the

most intriguing aspect of these distributions, besides the clear evidence of hotspots and cold

spots, was the unique spatial profile of injuries (Fig 4A–4D). Red represents "hotspots", or

areas with high injury density, and blue represents cold spots or areas of low or no density of

injury. All injury types depict a distinctive pattern.

3.3. Regression results

The table below (Table 5) compares the three distinct models. Three of the four injury catego-

ries showed moderate performance, suggesting that the data available at Wellbeing Toronto

Table 3. Moran’s I indices for all categories per neighborhood count.

ICD-10 Injury type Count Moran’s I

Mi�� St. Dev

S00-S09 Injuries to the head 340906 0.174 9.782

S10-S19 Injuries to the neck 41399 0.331 18.575

S20-S29 Injuries to the thorax 52003 0.272 15.305

S30-S39 Injuries to the abdomen, lower back, lumbar spine and pelvis 52273 0.292 16.414

S40-S49 Injuries to the shoulder and upper arm 102450 0.275 15.420

S50-S59 Injuries to the elbow and forearm 148408 0.245 13.751

S60-S69 Injuries to the wrist and hand 378980 0.294 16.519

S70-S79 Injuries to the hip and thigh 39945 0.170 9.573

S80-S89 Injuries to the knee and lower leg 167493 0.265 14.898

S90-S99 Injuries to the ankle and foot 219222 0.307 17.230

T00-T07 Injuries involving multiple body regions 12469 0.366 20.659

T08-T14 Injuries to unspecified parts of trunk, limb or body region 24560 0.446 25.722

V01-V99 External Morbidity and Mortality 22888 0.226 4.779

W00-W19 Falls 86751 0.241 5.070

X60-X84 Intentional Injuries 1877 0.158 3.465

�� Significant at the 0.01 confidence level.

https://doi.org/10.1371/journal.pone.0248285.t003

Table 4. Moran’s I indices for main categories per population distribution.

Category Moran’s I

Injuries from external causes 2.918

External Morbidity and Mortality 2.991

Falls 5.069

Intentional Injuries 2.069

https://doi.org/10.1371/journal.pone.0248285.t004
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may support well decision making at neighborhood and community participation for injury

analysis and integration. In all cases, the spatial regression outperformed the ordinary least

squares, with significant improvements in the r2 statistic throughout. The intentional injury

model, however, showed low r2, suggesting that demographic data does not explain sufficiently

the reasons for self-harm. Finally, it is important to note that injury categories have different

variables for each explanatory model, suggesting that there should be different policies and

preparedness integration within the city’s public health decisions. The following variables were

selected through the initial backward elimination as consistent for the models:

i. Unintentional Injuries: Social Housing, Seniors Living Alone, Total Population, Traffic Col-

lision, Population Density.

ii. Morbidity: Traffic Collision, Total Population, Visible Minority, Social Housing, Seniors

Living Alone, Area (km2).

iii. Falls: Traffic Collisions, Total Population, Visible Minority, Social Assistant Recipients,

Social Housing, Seniors Living Alone, Area (Km2).

iv. Intentional Injuries: Total Population, Low-Income Families, Low Income Population,

Rented Dwellings, Assaults, Robberies, Population Density

3.4. SOM cluster results

Analysis of health geography is highly important as it aids in providing evidence of possibly

unknown risk factors that may be quantified and better understood only if they are explored

spatially [50]. In addition to the regression models (discussed in section 3.3), self-organizing

maps (SOM) were built based on the regressors (variables) included in the regression models.

In the evaluation of health geography, SOM is a highly useful tool that is used to identify

Fig 3. Queen contiguity map for neighborhoods in Toronto.

https://doi.org/10.1371/journal.pone.0248285.g003
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outliers in a dataset [51]. In this analysis, SOM has been used to identify which variables (the

attributes or characteristics) are most correlated to injury by type in the City of Toronto neigh-

bourhoods. SOM clusters were generated for each type of injury in the regression model,

including unintentional injuries, morbidity, falls and intentional injuries.

The SOM built for unintentional injuries included four clusters. In cluster 1, total popula-

tion and traffic collisions were the variables that were most strongly correlated with uninten-

tional injuries. This cluster was spatially located in the northeast and northwest peripheries as

well as the south-central neighbourhoods in Toronto. In cluster 2, seniors living at home,

social housing, and population density were the variables that were most strongly correlated

with unintentional injuries. This cluster was spatially distributed throughout Toronto and was

less prevalent in south-central Toronto. In cluster 3, traffic collisions, social housing, seniors

living at home, total population, population density (ordered from most to least correlated)

were the variables that were most strongly correlated with unintentional injuries. This cluster

Fig 4. a. Unintentional Injury (external causes) Hotspots. b–Unintentional Injury (External Morbidity and Mortality) Hotspots. c–Unintentional Injury (Falls)

Hotspots. d–Intentional Injury Hotspots.

https://doi.org/10.1371/journal.pone.0248285.g004
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was also spatially distributed throughout Toronto but was more prevalent in south-central

Toronto. In cluster 4, population density was most strongly correlated with unintentional inju-

ries. This cluster was represented in a single neighbourhood, located in Toronto’s city center.

The results of the heatmaps for the regressors (for unintentional injuries) have been summa-

rized in Table 6, which shows a breakdown of the cluster that each variable is highly correlated

with. These results show that clusters 1 and 2 have the highest number of variables correlated

with unintentional injuries, whereas cluster 4 has fewer variables correlated with unintentional

injuries and cluster 3 has variables that are only moderately correlated with unintentional

injuries.

The SOM built for morbidity also included four clusters. In cluster 1, seniors living at home

and social housing were the variables that were most strongly correlated with morbidity. This

cluster was spatially distributed throughout Toronto but was less prevalent in the northeast

Table 5. Comparison of three different regression models (spatial regressions and OLS).

Variables Spatial Lag Model Spatial Error Model Ordinary Least Squares

z-score z-score t-statistic

Unintentional Injuries

Social Housing 1.82714 1.49932 2.03605

Seniors Living Alone -2.58747 -2.23972 -2.59883

Total Population -3.04475 -3.49583 -2.94316

Traffic Collisions -1.84367 -1.7844 -1.81751

Population Density -2.87096 -2.57958 -3.12535

R2 0.457918 0.485750 0.421782

Morbidity

Traffic Collisions -2.05927 -2.1162 -1.92051

Total Population -2.09607 -2.52196 -2.26029

Visible Minority 1.89049 2.30866 2.04684

Social Housing 1.94944 1.65653 2.29476

Seniors Living Alone -2.17949 -1.62644 -2.29047

Area (Km^2) 1.90814 1.92133 1.94006

R2 0.501747 0.504612 0.480922

Falls

Traffic Collisions -2.98132 -3.01468 -2.70176

Total Population -2.19972 -2.42254 -2.39975

Visible Minority 2.03281 2.26119 2.20993

Social Assistant Recipients -2.27307 -2.30639 -1.96597

Social Housing 2.43288 2.52839 2.32207

Seniors Living Alone -2.32257 -2.24224 -1.96219

Area (Km^2) 2.79554 2.6891 2.70456

R2 0.528434 0.527985 0.507562

Intentional Injuries

Total Population -2.87985 -2.64276 -2.91692

Low-Income Families -1.33643 -1.27004 -1.46417

Low Income Population 1.68586 1.53451 1.72947

Rented Dwellings -2.36279 -2.2732 -2.13923

Assaults 3.11778 2.90505 3.06752

Robberies -2.90614 -2.90247 -2.69822

Population Density 3.50405 3.43355 3.3855

R2 0.296519 0.290263 0.269535

https://doi.org/10.1371/journal.pone.0248285.t005
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part of the city. In cluster 2, seniors living at home, traffic collisions total population and visible

minorities (ordered from most to least correlated) were the variables that were most strongly

correlated with morbidity. This cluster was spatially distributed throughout Toronto but was

more prevalent in the north, south, central and southwest. In cluster 3, total population and

visible minorities were the variables most strongly correlated with morbidity, however, seniors

living at home was also strongly correlated with morbidity. This cluster was represented in

only two neighbourhoods, one is south-central and the other in east Toronto. In cluster 4, traf-

fic collisions and area were most strongly correlated with morbidity. This cluster was also only

represented in two neighbourhoods, one in northeast and the other in northwest Toronto. The

results of the heatmaps for the regressors (for morbidity) have been summarized in Table 6,

which shows a breakdown of the cluster that each variable is highly correlated with. These

results show that clusters 3 and 4 have the highest number of variables correlated with morbid-

ity, whereas clusters 1 and 2 have fewer variables correlated with morbidity.

The SOM built for falls, again, included 4 clusters. In cluster 1 seniors living alone, social

assistance recipients, social housing, traffic collisions, total population, and visible minorities

(ordered from most to least correlated) were the variables most strongly correlated with falls.

This cluster was distributed throughout Toronto and was the dominating cluster, representing

the majority of the city. In cluster 2, social housing was most strongly correlated with falls.

This cluster was only represented in two neighbourhoods, both located in south-central

Toronto. In cluster 3, total population and visible minorities were most strongly correlated

with falls. This cluster was also only represented in two neighbourhoods, one located in south-

central and the other located in east Toronto. In cluster 4, traffic collisions and area were the

variables most strongly correlated with falls. Like clusters 2 and 3, this cluster was also only

represented in two neighbourhoods, one in northeast and the other in northwest Toronto. The

results of the heatmaps for the regressors (for falls) have been summarized in Table 7, which

shows a breakdown of the cluster that each variable is highly correlated with. These results

Table 6. Unintentional injuries heatmaps for the regressors summary.

Unintentional Injuries

Variable Cluster

Social Housing 2

Seniors Living Alone 2

Total Population 1

Traffic Collisions 1

Population Density 4

https://doi.org/10.1371/journal.pone.0248285.t006

Table 7. Falls heatmaps for the regressors summary.

Falls

Variable Cluster

Traffic Collisions 4

Total Population 3

Visible Minority 3

Social Assistance Programs 1

Social Housing 2

Seniors Living Alone 1

Area 4

https://doi.org/10.1371/journal.pone.0248285.t007
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show that clusters 1, 3 and 4 have the highest number of variables correlated with falls, whereas

cluster 2 has fewer variables correlated with falls.

The SOM built for intentional injuries only included 3 clusters (Table 8). In cluster 1, low-

income population, low-income family, total population, rented dwelling, and population den-

sity (ordered from most to least correlated) were strongly correlated with intentional injuries.

This cluster was distributed throughout Toronto and was the dominating cluster, representing

most neighbourhoods in the city. In cluster 2, rented dwelling, robberies, assaults, low-income

population, low-income family, total population (ordered from most to least correlated) were

the variables strongly correlated with intentional injuries. This cluster was represented in sev-

eral neighbourhoods, all spatially located in south central Toronto. In cluster 3, rented dwell-

ing and population density were strongly correlated with intentional injuries. This cluster was

only represented in two neighbourhoods, both located in central Toronto. The results of the

heatmaps for the regressors (for intentional injuries) have been summarized in Table 9, which

shows a breakdown of the cluster that each variable is highly correlated with. These results

show that cluster 2 has the highest number of variables correlated with unintentional injuries,

whereas clusters 1 and 3 have fewer variables correlated with intentional injuries.

Seniors living alone and traffic collisions were strongly correlated with the majority of clus-

ters for unintentional injuries, morbidity, and falls. Indicating that these variables may be

more likely to contribute to these types of injuries compared to the other variables included in

this analysis. Rented dwelling and low-income population were strongly correlated with the

clusters for intentional injuries, indicating that intentional injuries are more likely to occur in

poorer (or low income) Toronto neighbourhoods. Overall, clusters that were represented by a

larger number of neighbourhoods tended to have a higher number of variables correlated with

each injury type, while smaller clusters tended to have fewer numbers of (or more specific) var-

iables associated with injury type. Population density and rented dwellings were variables that

Table 8. Intentional injuries heatmaps for the regressors summary.

Intentional Injuries

Variable Cluster

Total Population 1 and 2

Low Income Families 1 and 2

Low Income Population 1

Rented Dwellings 2 and 3

Assaults 2

Robberies 2

Population Density 3

https://doi.org/10.1371/journal.pone.0248285.t008

Table 9. Morbidity heatmaps for the regressors summary.

Morbidity

Variable Cluster

Traffic Collisions 4

Total Population 3

Visible Minority 3

Social Housing 1

Seniors Living Alone 2

Area 4

https://doi.org/10.1371/journal.pone.0248285.t009
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tended to be associated with locations in central Toronto (i.e., the neighbourhoods that have

higher population density compared to the city’s peripheries).

4. Conclusions

Recent advances in geocomputational methods, as well as spatial analysis, have brought new

techniques that better enable the understanding of spatial characteristics of cities and regions

[52]. It is of utmost importance to understand regional patterns of epidemiologic concern, to

better optimize public health efficiency in rapidly changing regions [53]. In this sense, geo-

computational methods, when combined with large spatially-explicit data, allow for significant

contributions of regional understanding of injury dynamics. Supported by data availability,

open data at the city level may have a profound impact on the assessment and resulting com-

munity and policy intervention strategies for neighborhoods. The application of geocomputa-

tional techniques to the National Ambulatory Care Reporting System has allowed perceiving

that the pattern of the residence locations of injured persons is not spatially random, but

clearly very spatially dependent.

There is some disagreement in the literature regarding the effects of immigration status on

health and violence. A number of authors have shown that population health determinants

such as income and social status, education, employment or working conditions, social and

physical environments, personal health practices, healthy child development, biologic and

genetic endowment, health services, sex, and culture have a relationship with injury patterns

[54–56]. Others have argued that the distinction between intentional and unintentional injury

is arbitrary [57, 58] and that the risk factors associated with intentional and unintentional

injury overlap [59–61]. Based on these lines of previous work, we would have expected that the

spatial distributions of the residences of those injured by these disparate mechanisms may

have overlapped. However, ours is the first study to demonstrate that the spatial distributions

of residence locations were similar regardless of whether the mechanism of injury was inten-

tional or unintentional. This finding was consistently seen in the choice of selected variables,

despite marked differences in size, economy, and cultural composition. The slightly larger

areas of hotspots of home locations of those injured unintentionally may either reflect a differ-

ence of the aforementioned factors or simply be related to the larger number of persons

injured unintentionally. Finally, the most resounding conclusion is that injury can greatly ben-

efit from tailor-made injury prevention initiatives that address the specificities of neighbor-

hoods and types of injury to guarantee a successful mechanism of injury prevention at the

local level.
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