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a b s t r a c t

This paper proposes a new concept: the usage of Multivariate Markov Chains (MMC) as co-
variates. Our approach is based on the observation thatwe can treat possible categorical (or
discrete) regressors, whose values are unknown in the forecast period, as an MMC in order
to improve the forecast error of a certain dependent variable. Hence, we take advantage of
the information about the past state interactions between the MMC categories to forecast
the categorical (or discrete) regressors and improve the forecast of the actual dependent
variable.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a simple regime-switching model

yt = βxt + δzt + ut

where zt is a latent dummy variable that evolves over time according to a homogeneous Markov chain (i.e. P ( zt = i0| zt−1
= i1) , i0, i1 = 0, 1). This model and further refinements have been extensively studied in the literature (see Hamilton
(1989)). In some circumstances the zt variable may be observable, and in this case standard methods of estimation of β and
δ apply. However, forecasting yt may raise some difficulties because zt (which is assumed to be a random variable) is not ob-
servable in the forecasting period (to simplify one assumes that xt is a dynamic term, e.g. AR(1), or a simple trend). In this case
a probabilistic structure is needed for zt , for example a Markov chain, as in regime-switching models. In this paper we ana-
lyze the forecasting problemwhen the yt variable depends on s > 1 discrete or categorical variables (observable during the
estimation period), whose dependencies are governed by amultivariateMarkov chain. This approach is new in the literature
and the closest model to ours is perhaps the regime-switching one cited above. However, in contrast to regime-switching
models which only deal with univariate Markov chains, usually with few states (in most cases with two or three states),
given the complexity of the estimation procedures, our model is able to involve many ‘‘zt ’’ variables, with multiple states,
thanks to the MTD-probit specification as we explain later on.

To be more precise, this paper considers the forecasting of a time series (yt ) that depends on quantitative variable(s) (xt )
and on s discrete or categorical variables, (S1t , . . . , Sst) where Sjt (j = 1, . . . , s) can take on values in the finite set {1, 2, . . . ,
m}. We assume that Sjt depends on the previous values of S1t−1, . . . , Sjt−1, . . . , Sst−1, and this dependence is well modeled
by a first-order MMC. However, Sjt can also depend on some explanatory variables lagged over more than one period — our
approach may in fact be viewed as a higher-order MMC (e.g. we may take Sjt−1 as St−j, and in this case we would have an
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s-order Markov chain). We propose using MMC as covariates in a regression model in order to improve the forecast error of
a certain dependent variable, provided it is caused, in the Granger sense, by theMMC. Traditionally, and so far, the published
literature only addresses the MMC as an end in itself. Here we take advantage of the information about the past state inter-
actions between the MMC categories to forecast the dependent variable more accurately. As far as we know this forecasting
problem has not yet been analyzed in the literature.

To form a regression model relating yt to the categorical variables, we convert the Sjt categories into a set of dummy
variables as follows:

zjkt = I{Sjt=k} (1.1)

where I{�} is the indicator function, I{Sjt=k} = 1 if Sjt = k and 0 otherwise. The proposed methodology also supports the
event where Sjt is a discrete variable with state space {1, 2, . . . ,m} (say), in which case no dummy variables are needed.

Let us now assume, without any loss of generality, a linear specification like:

yt = x′

tβ + z ′

tδ+ ut (1.2)
where:
• x′

t may be a vector of both deterministic and stochastic components, like AR(1) or other Ft−1 or Ft measurable predeter-
mined terms. HereFt represents the information available at time t , i.e. theσ -algebra generated by all events up to time t .

• z ′
t is a vector of dummy variables zkjt , concerning the MMC, defined in (1.1).

• {ut} is a white noise process mean independent of x′
t and z ′

t . We do not assume any distribution for ut .

To forecast yt+h we use the best predictor according to the expected squared forecast error:

E (yt+h| Ft) = E

x′

t+h

 Ft

β + E


z ′

t+h

 Ft

δ (1.3)

given the exogeneity of the disturbance term, i.e. E (ut | Ft−1) = 0 ∀t .
To illustrate, suppose that we have two categorical variables (s = 2) and each categorical datum takes on values in the

set {1, 2, 3} , i.e. m = 3. Unwinding the vector z ′
t and the vector δ it follows that

yt+h = x′

t+hβ + δ11I{S1t=1} + δ12I{S1t=2} + δ21I{S2t=1} + δ22I{S2t=2} + ut (1.4)
where Sjt represents the j-th categorical series of the MMC (notice that the dummy variable trap is avoided with this spec-
ification). Since the values of Sjt+h are unknown in the forecasting periods, i.e. for h > 1, we explore possible dependencies
between Sjt+h and past values of S1t+h and S2t+h using an MMC approach, to predict Sjt+h, and consequently, yt+h. If both
S1tand S2t are discrete variables, the regression equation is simpler:

yt+h = x′

t+hβ + δ1S1t+h + δ2S2t+h + ut . (1.5)

From Eqs. (1.4) or (1.5), it is clear that to forecast yt+h one needs to evaluate P

Sjt+h = k

 Ft

, for k = 1, 2, . . . , s. To

keep these expressions simple, we make the following assumptions:

Assumption 1.1. First order MMC.

P

Sjt = k

 Ft−1


= P

Sjt = k

 S1t−1 = i1, . . . , Sst−1 = is

. (1.6)

That is, Sjt given {S1t−1, . . . , Sst−1} is independent of any other variables in Ft−1.

Assumption 1.2. Homogeneous MMC.

We have a homogeneous MMC in the sense that

P

Sjt = k

 S1t−1, . . . , Sst−1


= P

Sjt+h = k

 S1t+h−1, . . . , Sst+h−1

. (1.7)

Assumption 1.3. Contemporaneous needless terms.

Sjt is independent of

S1t , . . . , Sj−1t , Sj+1t , . . . , Sst


given {S1t−1, . . . , Sst−1}, i.e.

P

Sjt = k

 S1t = i1, . . . , Sj−1t = ij−1, Sj+1t = ij+1, . . . , Sst = is, S1t−1, . . . , Sst−1


= P

Sjt = k

 S1t−1, . . . , Sst−1

. (1.8)

To obtain the forecast of yt+h weneed to calculate E

x′

t+h

 Ft

and E


z ′

t+h

 Ft

. It is assumed the former expression is known,

hence we focus on the latter expression. A generic element of E

z ′

t+h

 Ft

is E


zkj,t+h

 Ft

which, by Assumption 1.1, can

be written as
E


zkj,t+h

 Ft


= P

zkj,t+h = 1

 Ft


= P

Sj,t+h = k

 Ft


= P

Sj,t+h = k

 S1t = i1, . . . , Sst = is

. (1.9)

We use the MMC theory to estimate the expression (1.9), which ultimately leads to the expressions E

z ′

t+h

 Ft

and

E (yt+h| Ft). We briefly cover the main aspects of MMC estimation theory in the next section.
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2. Multivariate Markov Chains as regressors: model estimation

In this section we explain our strategy to estimate the parameters defined in Eq. (1.2), ψ= (β, δ) and the parameters
associated with themultivariate Markov chain, which we denote by η. Let θ = (ψ, η) be the complete vector of parameters,
and B and D the parameter space of ψ= (β, δ) and η, respectively. Given the structure of our model and by construction, ψ
and η are variation free (see Engle et al. (1983)), since (ψ, η) ∈ B×D, i.e.ψ and η are not subject to cross restrictions so that
for any specific admissible value in B forψ, η can take any value in D. In these circumstances, the conditional distribution of
yt | St , Ft−1 depends on ψ only, and the conditional distribution of St | Ft−1 depends on η only. In this way the joint density
of the complete sample can be sequentially factorized as follows:

f

y0, y1, . . . , yn; Sj0, Sj1, . . . , Sjn; θ


=

n
t=1

f (yt , St | Ft−1; θ)

=

n
t=1

f (yt | St , Ft−1;ψ)

n
t=1

P (St | Ft−1; η) . (2.1)

Let us focus on P (St | Ft−1; η) = P (S1t , . . . , Sst | Ft−1; η). This expression may be written as:

P (S1t , . . . , Sst | Ft−1; η) = P (S1t , . . . , Sst | S1t−1, . . . , Sst−1; η) (2.2)

=

s
j=1

P

Sjt

 S1t−1, . . . , Sst−1; η


(2.3)

=

s
j=1

P

Sjt

 S1t−1, . . . , Sst−1; ηj


(2.4)

where (2.2) and (2.3) follow from Assumptions 1.1 and 1.3, respectively. In Eq. (2.4) we decomposed η as η =

η1, . . . , ηs


,

where ηj are the parameters associated with the conditional distribution Sjt
 S1t−1, . . . , Sst−1. As previously with ψ and η,

the vector parameters η1, . . . , ηs are variation free, as will become clear later on. Rearranging all terms one has

f

y0, y1, . . . , yn; Sj0, Sj1, . . . , Sjn; θ


=

n
t=1

f (yt | St , Ft−1;ψ)

n
t=1

s
j=1

P

Sjt

 S1t−1, . . . , Sst−1; ηj


=

n
t=1

f (yt | St , Ft−1;ψ)

n
t=1

P

S1t | S1t−1, . . . , Sst−1; ηj


. . .

n
t=1

P

Sst | S1t−1, . . . , Sst−1; ηj


(2.5)

and the log likelihood is

log f

y0, y1, . . . , yn; Sj0, Sj1, . . . , Sjn; θ


=

n
t=1

log f (yt | St , Ft−1;ψ)

+

n
t=1

log P

S1t | S1t−1, . . . , Sst−1; η1


+ · · · +

n
t=1

log P

Sst | S1t−1, . . . , Sst−1; ηs


. (2.6)

This decomposition shows that the parameters can be estimated separately, by maximizing the various expressions in
the previous equation, without any loss of consistency or efficiency. Consequently, ψ= (β, δ) is estimated, for example,
using the ML in Eq. (1.2), and ηj (j = 1, . . . , s) are estimated taking each conditional distribution Sjt

 S1t−1, . . . , Sst−1 one at
a time, as we will describe in the next section (see for example Eq. (3.2)).

3. Multivariate Markov Chain estimation

The purpose of this section is to describe a method to estimate the parameters ηj defined in the log-likelihood expres-
sion (2.6). As proved in the previous section, the expression

n
t=1 log P


Sjt

 S1t−1, . . . , Sst−1; ηj

can be maximized inde-

pendently of the other terms contained in the log-likelihood function (2.6). Let Pj ( i0| i1, . . . , is) ≡ P

Sjt = i0

 S1,t−1 =

i1, . . . , Ss,t−1 = is

where j ∈ {1, 2, . . . , s} and i1, . . . , is ∈ {1, 2, . . . ,m}. It is well known that modeling these probabilities

when s and m are relatively large and the sample size is small or even moderate, is unfeasible because the total number of
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parameters is ms (m − 1), as can be shown. To overcome this problem Raftery (1985) considered a simplifying hypothesis
for modeling high-order Markov chains (HOMC). Recently, Nicolau (in press) proposed an alternative specification, called
the MTD-Probit model:

Pj ( i0| i1, . . . , is) = PΦ
j ( i0| i1, . . . , is) ≡

Φ

ηj0 + ηj1Pj1 ( i0| i1) + · · · + ηjsPjs ( i0| is)


m

k=1
Φ


ηj0 + ηj1Pj1 (k| i1) + · · · + ηjsPjs (k| is)

 (3.1)

where ηji ∈ R (j = 1, . . . , s; i = 1, . . . ,m) and Φ is the (cumulative) standard normal distribution function. When Sjt is the
dependent variable the likelihood is

log L =


i1i2...iis i0

ni1 i2...iis i0 log

PΦ
j ( i0| i1, . . . , is)


(3.2)

and the maximum likelihood estimator is defined, as usual, as η̂j = argmaxηj1,...,ηjs log L. The parameters Pjk ( i0| i1) , k =

1, . . . , s can be estimated in advance, through the consistent estimators P̂jk ( i0| i1) =
ni1 i0n

i0=1 ni1 i0
where ni1i0 is the number

of transitions from Sk,t−1 = i1 to Sjt = i0. This procedure greatly simplifies the estimation procedure and does not alter the
consistency of the MLE η̂j estimator, as P̂jk is a consistent estimator of Pjk.

4. Multi-step forecast model

The previous section described how the probabilities P

Sjt = i0

 S1,t−1 = i1, . . . , Ss,t−1 = is

can be estimated. In this

section we introduce the h-step-ahead MMC forecast problem, i.e. P

Sj,t+h = k

 S1t = i1, . . . , Sst = is

. Since we have a

homogeneousMMC, the one-step-ahead forecast expression is straightforward, given Assumption 1.2: P

Sjt+1 = k|S1t , . . . ,

Sst


= P

Sjt = k|S1t−1, . . . , Sst−1


.

To obtain the h-step-ahead MMC forecast, we consider two procedures. In the first we start to deduce a general formula
for the h-step-ahead MMC forecast that can be recursively computed from the previous forecast. Using the discrete version
of Chapman–Kolmogorov equations, the formula of total probability, and Assumptions 1.1–1.3, we have

P

Sjt+h = k|S1t , . . . , Sst


=

m
i1

m
i2

· · ·

m
is

P

Sjt+h = k

 S1t+h−1 = i1, . . . , Sst+h−1 = is, S1t , . . . , Sst


=

m
i1

m
i2

· · ·

m
is

P

Sjt+h = k

 S1t+h−1 = i1, . . . , Sst+h−1 = is


× P (S1t+h−1 = i1|S1t , . . . , Sst)  
from h−1

P (S2t+h−1 = i1|S1t , . . . , Sst)  
from h−1

× · · · × P (Sst+h−1 = i1|S1t , . . . , Sst) .  
from h−1

(4.1)

This formula is calculated recursively (notice that it depends on P

Sjt+h−1 = i1|S1t , . . . , Sst


, j = 1, 2, . . . , s.). The second

procedure is based on the assumption that

P

Sjt+h = i0

 S1,t = i1, . . . , Ss,t = is


=
Φ


ηj0 + ηj1P


Sjt+h = i0

 S1t = i1

+ · · · + ηjsP


Sjt+h = i0

 Sst = is


m
k=1

Φ

ηj0 + ηj1P


Sjt+h = i0

 S1t = i1

+ · · · + ηjsP


Sjt+h = i0

 Sst = is
 (4.2)

which is clearly a natural extension of Eq. (1.4). This expression requires that P

Sjt+h = i0

 Skt = ik

be computed in advance.

From the Chapman–Kolmogorov equations and the formula of total probability, it can be easily seen that

P

Sjt+h = i0

 Skt = ik


=

m
α=1

P

Sjt+h = i0

 Sk,t+h−1 = α

P


Sk,t+h−1 = α

 Skt = ik

. (4.3)

This expression is equal to the element (i0, ik) of the matrix product P (jk)

P (kk)

h−1 where P (jk) is a matrix with elements
P


Sjt = i0

 Skt−1 = ik

. We found formula (4.2) computationally easier to implement than (4.1).

We may now establish the algorithm behind the forecast of yt+h:
1. Run the regression model yt = x′

tβ + z ′
tδ+ ut and estimate β and δ using the OLS method or any other method.

2. Obtain η̂j = argmaxηj1,...,ηjs log Lwhere the log-likelihood refers to Eq. (3.2).
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3. From the estimates η̂j calculate P

Sjt+1 = k|S1t , . . . , Sst


, and derive the expressions P


Sjt+h = k|S1t , . . . , Sst


, either

recursively from formula (4.1) or from formula (4.2).
4. Finally, obtain the forecast yt+h by calculating E (yt+h| Ft) = E


x′

t+h

 Ft

β + E


z ′

t+h

 Ft

δ.

5. Monte Carlo simulation study

5.1. Monte Carlo simulation study: procedure and design

In this section we evaluate the MMC predictive potential through a Monte Carlo simulation problem. The goal is to con-
struct a model where the MMC, transformed into s × (m − 1) dummy variables (one dummy for each state minus one, for
each category), play the role of covariates, seeking to gauge how they help forecast a certain dependent variable.

We consider here a simple process with two categories (s = 2) with each one taking values of 1, 2 or 3 (m = 3). We
simulate the MMC in accordance with the following algorithm:
1. Initialize the process {(S1t , S2t)} by assigning arbitrary values for S10 and for S20.
2. Define twoms

× m TPMs whose elements are, respectively, the following probabilities

P (S1t = io| S1t−1 = i1, S2t−1 = i2)
P (S2t = io| S1t−1 = i1, S2t−1 = i2)

(5.1)

(see the definition of the data-generation process below).
3. Given the initial values S10 and S20 (step 1), simulate the multivariate process {(S1t , S2t)} , t = 1, . . . , T as follows:

(a) simulate U1, uniformly distributed on [0, 1];
(b) let us define p[1]

i ≡ P (S1t = i| S1t−1 = i1, S2t−1 = i2);
(c) assign a value to S1t according to the rule:

S1t =

1 if 0 ≤ U1 < p[1]
1

2 if p1 ≤ U1 < p[1]
1 + p[1]

2
3 if p1 + p2 ≤ U1 < 1

(d) repeat this procedure for S2t (using U2 ∼ U (0, 1), independent of U1).
4. Repeat the steps 1–4 until t = T .

Thus, we construct our 4 dummy variables, as in (1.1), such that: zjk,t = I{Sjt=k}, k = 1, . . . ,m − 1.
We consider the following linear data-generation process (DGP) where

• z ′
t ≡


z11 z12 z21 z22


, δ =


1 1 1 1

′, for simplicity,
• x′

t =

1 xt


and xt (such as ut ) is i.i.d. N (0, 1), β =


1 1

′.

To fully define the DGP, we arbitrarily construct the TMP as follows:

S1t−1 1 1 1 2 2 2 3 3 3
S2t−1 1 2 3 1 2 3 1 2 3

S1t
1 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1
2 0.1 0.4 0.1 0.4 0.8 0.1 0.1 0.4 0.1
3 0.8 0.1 0.8 0.1 0.1 0.4 0.8 0.1 0.8

For convenience,we assume that S1t and S2t have the same transition probabilities, i.e. that P(S2t = i0| S1t−1 = i1, S2t−1 =

i2) = P(S1t = i0| S1t−1 = i1, S2t−1 = i2).
We aim to compare the dependent variable h-step-ahead forecast errors produced by four different hypotheses:

Case 1. The values of dummy variables at t + h are known,

ẑ(1)
jkt+h = zjkt+h (5.2)

Case 2. The values of dummy variables at t + h are predicted using the following proposed methodology

ẑ(2)
jkt+h = P̂


Sjt+h = k

 S1t = i1, S2t = i2


(5.3)

where P̂

Sjt+h = k

 S1t = i1, S2t = i2

is obtained according to expression (4.3).

Case 3. The values of dummy variables at t + h are predicted using marginal means

ẑ(3)
jkt+h = T−1

T
t=1

zjkt . (5.4)

Note that we estimate the event I{Sjt=k} using a consistent estimator for the marginal probability, P

Sjt+h = k


.

Case 4. The dummies are omitted, i.e ẑ(4)
jkt+h ≡ 0.

Out-of-sample forecasts were generated by the so-called recursive (expanding windows) forecasts. An initial sample using
data from t = 1 to T = 1000 is used to estimate themodels, and h-step ahead out-of-sample forecasts are produced starting
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Fig. 1. Results of the forecast errorsMSElh .

at time T = 1000. The sample is increased by one, the models are re-estimated, and h-step ahead forecasts are produced
starting at T + 1. This procedure is repeated 1000 times, i.e. we considered 1000 out-of-sample forecasts, and the forecast-
ing time horizon was defined as h = 1, 2, 3, 4, 5. Lastly, we assessed the quality of the forecast using the statisticsMSElh =

N−1 T+999
t=T ê2l,t+h where N = 1000 is the number of replicas considered in the experiment and el,t+h is the forecast error

produced bymodel l (l = 1, 2, 3, 4) at the hth forecast step, i.e. el,t+h ≡ yt+h − ŷ(l)
t+h,where ŷ(l)

t+h ≡ x′

t+hβ̂+ ẑ(l)′
t+hδ̂ and ẑ(l)′

t+h ≡
z(l)
11t+h z(l)

12t+h z(l)
21t+h z(l)

22t+h


, for l = 1, 2, 3, 4.

5.2. Monte Carlo simulation study: discussion of results

In this section we report the results of the Monte Carlo study presented in the previous section, investigating the po-
tential forecast gains of a dependent variable, derived by processing categorical interrelated regressors as an MMC, i.e. by
exploiting intra and inter-transition probabilities between categorical regressors. Fig. 1 presents theMSElh for l = 1, 2, 3, 4
and h = 1, 2, 3, 4.

As expected, case 1 presents the best results, since the forecast of yt+h is based on the actual values zjkt+h, and case 4 the
worst result, since the dummies zjkt+h were simply ignored. Case 2 uses the proposed methodology, and hence explores the
intra and inter-transition probabilities between categorical regressors; it clearly produces better results than case 3, inwhich
the forecasts are based on the estimate of themarginal probabilities P


Sjt+h = k


. To confirm the advantage of the proposed

method over the marginal probabilities we carried out the Diebold and Mariano (2002) (DM) test, that allows us to assess
the significance of the MSE difference between those models. As is known, the DM can be trivially calculated by regression
ê23,t+h − ê22,t+h on an intercept, using heteroskedasticity and autocorrelation robust (HAC) standard errors. Our results
(available upon request) show that the proposed model outperforms the forecasts based on the marginal mean for h = 1
and h = 2 (p-value zero), and possibly h = 3 (p-value 0.08). When h increases, the advantage of using our model dissipates,
which is to be expected taking into account that in stationarity and weak dependence assumptions, the conditional
probabilities converge into the stationary probabilities, i.e. P


Sjt+h = i0

 S1t = i1, S2t = i2


→ P

Sjt = i0


as h → ∞.

6. Conclusions

This paper proposed a new concept by using MMC as covariates in a regression model in order to improve the fore-
cast error of a certain dependent variable, provided it is caused by the MMC. Traditionally, the published literature only
addresses the MMC as an end in itself. In the context of an endogenous variable that depends on some time-dependent cat-
egorical or discrete variables, we show that taking advantage of the information about the past state interactions between
the categorical variables through an MMC specification via modeling the intra and inter-transition probabilities within and
between data categories, may lead to a substantial forecasting improvement of that endogenous variable, as theMonte Carlo
experiment has shown.
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